partition.cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include <map>
#include <unordered_map>
#include <sstream>
#include <algorithm>
using namespace std;
typedef set<int> Itemset;
// Function to generate candidate itemsets of size k from frequent itemsets of size k-1
vector<Itemset> generateCandidates(const vector<Itemset>& frequentItemsets, int k) {
vector<Itemset> candidates;
for (size_t i = 0; i < frequentItemsets.size(); ++i) {
for (size_t j = i + 1; j < frequentItemsets.size(); ++j) {
Itemset candidate(frequentItemsets[i]);
candidate.insert(frequentItemsets[j].begin(), frequentItemsets[j].end());
if (candidate.size() == k) {
candidates.push_back(candidate);
}
}
}
return candidates;
}
// Function to count support for itemsets
map<Itemset, int> countSupport(const vector<Itemset>& transactions, const vector<Itemset>& candidates) {
map<Itemset, int> itemsetCounts;
for (const auto& transaction : transactions) {
for (const auto& candidate : candidates) {
if (includes(transaction.begin(), transaction.end(), candidate.begin(), candidate.end())) {
itemsetCounts[candidate]++;
}
}
}
return itemsetCounts;
}
// Function to filter candidates by minimum support
vector<Itemset> filterBySupport(const map<Itemset, int>& candidateCounts, int minSupport) {
vector<Itemset> frequentItemsets;
for (const auto& candidateCount : candidateCounts) {
if (candidateCount.second >= minSupport) {
frequentItemsets.push_back(candidateCount.first);
}
}
return frequentItemsets;
}
// Function to find frequent itemsets in a partition
vector<Itemset> findFrequentItemsets(const vector<Itemset>& transactions, int minSupport, const string& outFileName) {
// Step 1: Generate frequent 1-itemsets
fstream outFile(outFileName);
map<int, int> itemCounts;
for (const auto& transaction : transactions) {
for (int item : transaction) {
itemCounts[item]++;
}
}
vector<Itemset> frequentItemsets;
for (const auto& itemCount : itemCounts) {
if (itemCount.second >= minSupport) {
frequentItemsets.push_back({ itemCount.first });
}
}
int k = 2;
while (!frequentItemsets.empty()) {
// Step 2: Generate candidate k-itemsets using the previous frequent itemsets
vector<Itemset> candidates = generateCandidates(frequentItemsets, k);
// Step 3: Count the support for candidates and filter by minimum support
map<Itemset, int> candidateCounts = countSupport(transactions, candidates);
frequentItemsets = filterBySupport(candidateCounts, minSupport);
// Output the frequent itemsets of size k
if (!frequentItemsets.empty()) {
outFile << "Frequent " << k << "-itemsets in partition: " << endl;
for (const auto& itemset : frequentItemsets) {
for (int item : itemset) {
outFile << item << " ";
}
outFile << endl;
}
}
k++;
}
return frequentItemsets;
}
// Partition-based Apriori algorithm
void partitionApriori(const vector<Itemset>& transactions, int globalMinSupport, int partitionSize, const string& outFileName) {
vector<Itemset> globalCandidates;
ofstream outFile(outFileName);
vector<vector<Itemset>> partitions;
// Step 1: Partition the dataset
for (size_t i = 0; i < transactions.size(); i += partitionSize) {
vector<Itemset> partition(transactions.begin() + i, transactions.begin() + min(i + partitionSize, transactions.size()));
partitions.push_back(partition);
}
// Step 2: Find local frequent itemsets in each partition
for (const auto& partition : partitions) {
int localMinSupport = (globalMinSupport * partition.size()) / transactions.size();
if (localMinSupport == 0) localMinSupport = 1; // Ensure minSupport is at least 1
vector<Itemset> localFrequentItemsets = findFrequentItemsets(partition, localMinSupport, "out_partition.txt");
globalCandidates.insert(globalCandidates.end(), localFrequentItemsets.begin(), localFrequentItemsets.end());
}
// Step 3: Remove duplicate candidates
sort(globalCandidates.begin(), globalCandidates.end());
globalCandidates.erase(unique(globalCandidates.begin(), globalCandidates.end()), globalCandidates.end());
// Step 4: Count global support for candidate itemsets
map<Itemset, int> globalCounts = countSupport(transactions, globalCandidates);
// Step 5: Filter globally frequent itemsets
vector<Itemset> globalFrequentItemsets = filterBySupport(globalCounts, globalMinSupport);
// Step 6: Output globally frequent itemsets
outFile << "Global Frequent Itemsets: " << endl;
for (const auto& itemset : globalFrequentItemsets) {
for (int item : itemset) {
outFile << item << " ";
}
outFile << " (Support: " << globalCounts[itemset] << ")" << endl;
}
}
vector<Itemset> readTransactions(const string& filename) {
ifstream file(filename);
vector<Itemset> transactions;
string line;
if (file.is_open()) {
while (getline(file, line)) {
stringstream ss(line);
Itemset transaction;
int item;
while (ss >> item) {
transaction.insert(item);
}
transactions.push_back(transaction);
}
file.close();
}
else {
cerr << "Unable to open file" << endl;
}
return transactions;
}
int main() {
string filename = "td.txt";
string outFileName = "out_partition.txt";
int globalMinSupport = 40;
int partitionSize = 9;
vector<Itemset> transactions = readTransactions(filename);
partitionApriori(transactions, globalMinSupport, partitionSize, outFileName);
return 0;
}